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ensemble Kalman

filter

particle filter 

(bootstrap with 

resampling)

stochastic particle 

flow filter

1. prediction of

ensemble of particles 

in time (forecast)

Monte Carlo

(particle flow in 

time)

Monte Carlo

(particle flow in 

time)

Monte Carlo

(particle flow in 

time)

2. measurement 

update of the 

conditional probability 

density (analysis)

Kalman filter 

formulas for mean 

& covariance 

matrix updates

Bayes’ rule by 

multiplication (prior 

times likelihood)

Bayes’ rule by 

particle flow from 

the prior to the 

posteriori

3. suffers from 

particle degeneracy?

no yes no

4. suffers from curse 

of dimensionality?

no yes (even for linear 

Gaussian problems)

no for certain 

smooth nowhere 

vanishing densities

5. resample particles 

to mitigate particle 

degeneracy?

no yes no

6. optimal accuracy 

(with large enough N) 

for nonlinear & non-

Gaussian problems?

no yes yes for certain 

smooth nowhere 

vanishing densities
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𝑑𝑥

𝑑𝜆
= −

𝜕2 log 𝑝

𝜕𝑥2

−1
𝜕 log ℎ

𝜕𝑥

𝑇
+ 

𝑑𝑤

𝑑𝜆

𝑑𝑥

𝑑𝜆
≈ 𝑃

𝜕𝜃

𝜕𝑥

𝑇
𝑅−1 𝑧 − 𝜃(𝑥) + 

𝑑𝑤

𝑑𝜆

Bayes’ rule using 

stochastic particle flow:

approximation for Gaussian prior and likelihood (similar to

Ensemble Kalman filter but for continuous time measurements 

for each particle x):

P = sample covariance matrix from set of particles 
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standard particle filter (with resampling 

from proposal density) suffers from the 

curse of dimensionality

stochastic particle flow 

for Bayes’ rule 

mitigates

the curse of dimensionality



5
Nima Moshtagh, Jonathan Chan, Moses Chan, “Homotopy Particle Filter for Ground-

Based Tracking of Satellites at GEO,” AMOS Conference, Hawaii September 2016. 

boring old EKF standard 

particle 

filter 

particle flow filter 
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6
Nima Moshtagh, Jonathan Chan, Moses Chan, “Homotopy Particle Filter for Ground-

Based Tracking of Satellites at GEO,” AMOS Conference, Hawaii September 2016. 
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nonlinear filter problem*

 k

k

kk

k

kkkk

k

kkk

zzz

Z

Ztxp

v

vttxHz

z

tw

tx

twttxF

dwtxGdttxFdx

,...,,Z

 tsmeasuremen all ofset 

given Z  tat time x ofdensity y probabilit),(

 tat time vector noiset measuremen

),),((

 tat timet vector measuremen

 tat time vector noise process)(

 tat time  vectorstate)(

))(,),(()x(t

or    ),(),(
        

:state of model dynamical

21k

kk

k

k

1k

=

=

=

=

=

=

=

=





=

+=

+

estimate x 

given noisy 

measurements

7
*"The Oxford handbook of nonlinear filtering," edited by Dan Crisan and 

Boris Rozovskii, Oxford University Press, 2011.
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curse of dimensionality for classic particle filter*

optimal

accuracy:

r = 1.0

8
*Daum & Huang, IEEE AES Big Ski Conference, March 2003.
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prediction of  

conditional

probability 

density from 

tk-1 to tk

nonlinear filter*

solution of 

Fokker-Planck

equation

measurements

),(),(),(

:rule Bayes'     

1 kkkkkk txzpZtxpZtxp −=

9

*Yu-Chi Ho & R. C. K. Lee, "A Bayesian approach to problems in stochastic estimation 

and control," IEEE Transactions on automatic control, pages 333-339, October 1964.
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particle degeneracy*

likelihood

h(x)
prior

density

g(x)

particles to represent the prior

10

*Daum & Huang, “Particle degeneracy: root cause & solution,”  SPIE Proceedings 2011.

x
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particle degeneracy*

likelihood

h(x)
prior

density

g(x)

particles to represent the prior

11

*Daum & Huang, “Particle degeneracy: root cause & solution,”  SPIE Proceedings 2011.

x
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chicken & egg problem

How do you pick a 

good way to represent 

the product of two 

functions before you 

compute the product 

itself?

12Unrestricted Content



induced flow of particles for Bayes’ rule

pdf pdf

particles particles

flow of density

flow of particles

(sample from

density)

l =1

prior = g(x) posterior = g(x)h(x)/K(1)

)(log)(log)(log),(log lll Kxhxgxp −+=

dwdxfdx += ll),(

13

λ = continuous parameter         

(like time)

l = 0 Unrestricted Content
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initial probability distribution of particles:

λ = 0.0
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λ = 0.1

flow of particles (for one noisy measurement of sin(θ) with Bayes’ rule):
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λ = 0.2

flow of particles (for one noisy measurement of sin(θ) with Bayes’ rule):
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λ = 0.3

flow of particles (for one noisy measurement of sin(θ) with Bayes’ rule):
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λ = 0.4

flow of particles (for one noisy measurement of sin(θ) with Bayes’ rule):
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λ = 0.5

flow of particles (for one noisy measurement of sin(θ) with Bayes’ rule):
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λ = 0.6

flow of particles (for one noisy measurement of sin(θ) with Bayes’ rule):
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λ = 0.7

flow of particles (for one noisy measurement of sin(θ) with Bayes’ rule):
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λ = 0.8

flow of particles (for one noisy measurement of sin(θ) with Bayes’ rule):
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flow of particles (for one noisy measurement of sin(θ) with Bayes’ rule):
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final probability distribution of particles (resulting from 

one noisy measurement of sin(θ) with Bayes’ rule):

λ = 1
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incompressible 
flow

irrotational flow
Coulomb’s law 

flow
small curvature 

flow

Gaussian 
densities

exponential 
family

Fourier 
transform flow

constant curvature 
& constant speed 

flows

differential 
Knothe-

Rosenblatt flow
stochastic flows

method of 
characteristics

geodesic 

flows

stabilized 

flows

finite 
dimensional 

flow

direct 
integration

optimal Monge-
Kantorovich 

transports

Gibbs sampler 
like flow

Gromov’s

method

renormalization 
group flow 

inspired by QFT

Monge-Ampère 
with N-principle

separation of 
variables 

non-optimal 
transport

Moser coupling 
flow

Monge-Ampère 
flow

hybrid particle-
parameter flow
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exact particle flow for Gaussian densities:
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dx/dλ does not 

depend on K(λ), 

despite the fact that 

the PDE does!
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incompressible particle flow
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dx/dλ does not 

depend on K(λ), 

despite the fact that 

the PDE does!
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geodesic particle flow* :

28
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for Gaussian densities we get the EKF for each particle:
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If we approximate the density p as Gaussian, then the observed Fisher information matrix 

can be computed using the sample covariance matrix (C) over the set of particles:

dx/dλ does not 

depend on K(λ), 

despite the fact that 

the PDE does!

*Daum & Huang, “particle flow with non-zero diffusion for nonlinear 

filters," SPIE conference proceedings, San Diego, August 2013.
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derivation of PDE for particle flow with Q ≠ 0:
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stochastic particle flow:
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𝑑𝑥
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𝜕2 log 𝑝
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−1
𝜕 log ℎ
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𝑑𝑤

𝑑𝜆

𝜕2 log 𝑝
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+ λ

𝜕2 log ℎ
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= -𝐶−1+ λ

𝜕2 log ℎ
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33

There exists a “nice” solution (i.e., no integration required) to a

linear constant coefficient PDE for smooth functions if and only if

the number of unknowns is sufficiently large (at least the number

of linearly independent equations plus the dimension of x).
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simplest non-trivial example of 

Gromov’s method:
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more details:
Daum, Huang & Noushin,

“new theory & numerical 

experiments for Gromov’s 

method,” IEEE FUSION 

Conference, Cambridge 

England

July 2018
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VIDEO of recent talk at Stony 

Brook University (24 April 2018)

https://youtu.be/vqJGB47XoeY 
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further research:

(1) compute f & Q assuming that g & h are in the exponential family or 

Gaussian mixture or exponential family mixture

(2) compute f & Q without “splitting the PDE”, i.e., without assuming that 

the last 3 terms in the PDE sum to zero (but rather something else 

“nice” of our design, similar to Beneš filter or Daum exact filters)

(3) use Dirac approximation to solution of Fokker-Planck equation

(4) geometric solutions of PDE using involution or other EDS ideas 

(Deane Yang, Robert Bryant, Shirley Yap)

(5) compute SQRT(Q) rather than Q

(6) use quasi Monte Carlo (QMC) with Hilbert space filling curve rather 

than boring old Monte Carlo samples (Gerber & Chopin 2015)

(7) invent better methods to mitigate stiffness of the flow (Crouse 2019)

(8) numerical experiments & practical applications

(9) many more open problems; state & prove theorems, bounds,….
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𝐼𝑓 𝑁 ≥
52𝜅2
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𝑚
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𝑑 = 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 𝑥
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𝐿
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assuming that p is strictly log concave, positive and 𝐶2
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generalization of Gromov’s method:
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further generalization of Gromov’s method:

40
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even further generalization of Gromov’s method:
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more details:
Daum, Huang & Noushin,

“new theory & numerical 

experiments for Gromov’s 

method,” IEEE FUSION 

Conference, Cambridge 

England

July 2018
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new nonlinear filter: particle flow

new particle flow filter standard particle filters

many orders of magnitude faster than 

standard particle filters for difficult high 

dimensional problems

suffers from curse of dimensionality due to 

particle degeneracy

Bayes’ rule is computed using particle flow 

(like physics)

Bayes’ rule is computed using a pointwise 

multiplication of two functions 

no proposal density depends on proposal density (e.g., 

Gaussian from EKF or UKF or other)

no resampling of particles resampling is needed to repair the damage 

done by Bayes’ rule

embarrassingly parallelizable suffers from bottleneck due to resampling

computes log of unnormalized density suffers from severe numerical problems 

due to computation of normalized density

avoid normalization of conditional density & 

mitigate stiffness of flow

pick good proposal density for resampling 

(e.g., bootstrap or EKF or UKF)

stochastic particle flow ad hoc roughening or rejuvenation of 

particles (covariance inflation)

assumes smooth nowhere vanishing 

densities (and exploits such regularity)

does not exploit any smoothness or other 

regularity of densities or functions
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new

flow

incompressible flow

Gaussian flow

MALA, HMC, auxiliary & bootstrap

N = 1,000 particles

nonlinear dynamics & nonlinear measurements 

dimension of state vector = 17

100 Monte Carlo trials, SNR = 20 dB

time

d = 42 states

N = 10,000 particles

10

Metropolis adjusted Langevin

Hamiltonian Monte Carlo

regularized bootstrap
auxiliary particle filter

stochastic particle flow filter

incompressible flow

Gaussian flowmedian

error

over 

100

Monte 

Carlo 

runs

stochastic

particle flow

100

1000

1

10,000

100,000
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how to mitigate stiffness in ODEs for certain particle flows* 

method computational

complexity

filter 

accuracy

comments

1. use a stiff ODE solver (e.g., implicit 

integration rather than explicit)
large to 

extremely large

uncertain standard textbook 

advice

2. use very small integration steps everywhere extremely large good brute force 

solution

3. use very small integration steps only where 

needed (adaptively determined)
small to medium 2nd best Shozo Mori & 

Daum (2016)

4. use very small integration steps only where 

needed (determined non-adaptively)
small 3rd best easy to do with 

particle flow

5. transform to principal coordinates or 

approximately principal coordinates
small best easy for certain 

applications

6. Battin’s trick (i.e., sequential scalar 

measurement updates)
small very bad destroys particle 

flow

7. Tychonov regularization of the 

Hessian of  log p
very small often helps

8. shrinkage of the Hessian of log p very small often helps Khan & Ulmke

(2015)

45*Daum & Huang, “seven dubious methods to mitigate stiffness in particle 

flow for nonlinear filters,” Proceedings of SPIE Conference, May 2014.
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algorithm randomness comment

bootstrap particle filter 

(1993)

roughening & 

resampling

ad hoc randomness

other standard particle 

filters

roughening & 

resampling

ad hoc randomness

optimal transport none rigorous math theorems

Reich’s optimal 

transport particle filters

rejuvenation ad hoc randomness

early ensemble Kalman 

filters (1994)

none did not work well for many

problems

mature ensemble 

Kalman filters (1998)

artificial measurement 

noise

fixes problems of early 

ensemble Kalman filters

early particle flow filters none covariance optimistic for 

many problems

stochastic particle flow 

filters (2016)

non-zero diffusion for 

Bayes’ rule

principled math derivation 

of stochastic flow & 

improved accuracy & 

covariance consistency
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item deep learning particle flow

purpose learning & decisions learning & estimation & decisions

interesting wrinkle (which 

annoys many people)

lack of uniqueness of solution for 

highly non-convex loss functions

lack of uniqueness for solution of 

highly underdertermined transport 

PDE

architecture many layers many steps in log-homotopy

fundamental issues curse of dimensionality & 

ill-conditioning & singularity of 

Hessian

curse of dimensionality &

ill-conditioning & singularity of 

Hessian

tools stochastic gradient or natural gradient stochastic natural gradient

representation of geometry Hessian of loss function (log p) Hessian of log p

useful theory to explain 

performance

none none

performance evaluation numerical experiments numerical experiments

theory of design ersatz Bayesian echt Bayesian

computers of choice today GPUs GPUs

regularization random dropout & sparsity of 

coupling between layers and within 

layers 

Tychonov regularization or 

shrinkage or preferred coordinate 

system

key adaptive method adaptive learning rate adaptive step size in λ

dynamics of learning backpropagation (i.e., chain rule) Fokker-Planck equation (i.e., chain 

rule) 47Unrestricted Content



BIG DIG (17 million cubic yards of dirt, one 

million truckloads & $24 billion)*

48

*Daum & Huang, “particle flow & Monge-Kantorovich transport,”

proceedings of FUSION conference, Singapore, July 2012.Unrestricted Content



superb books on transport theory

Cédric Villani, “Topics in 

optimal transportation,” 

AMS Press 2003.  

Very clear & accessible 

introduction; wonderful 

book!

Cédric Villani, “Optimal 

transport: old & new,” 

Springer-Verlag 2009.  More 

detailed & rigorous math; 

free on internet!
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history of mathematics

1. creation of the integers

2. invention of counting

3. invention of addition as a fast 

method of counting

4. invention of multiplication as a 

fast method of addition

5. invention of particle flow as a 

fast method of multiplication*
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(1) Fred Daum, Jim Huang & Arjang Noushin, “Gromov’s method for Bayesian 

stochastic particle flow: a simple exact formula for Q,” Proceedings of IEEE 

Conference on Multisensor Data Fusion, Baden-Baden, September 2016.

(2) Fred Daum, “nonlinear filters: beyond the Kalman filter," IEEE Aerospace & 

Electronic Systems Magazine special tutorial, pages 57-69, August 2005. 

(3) Fred Daum and Jim Huang, “particle flow with non-zero diffusion for 

nonlinear filters," Proceedings of SPIE conference, San Diego, August 2013.

(4) Fred Daum & Jim Huang, “seven dubious methods to mitigate stiffness in 

particle flow with non-zero diffusion for nonlinear filters, Bayesian decisions and 

transport” Proceedings of SPIE Conference, Baltimore, April 2014.

(5) Fred Daum and Jim Huang, “particle flow and Monge-Kantorovich 

transport," Proceedings of IEEE FUSION Conference, Singapore, July 2012.

(6) Fred Daum & Jim Huang, “how to avoid normalization of particle flow for 

nonlinear filters, Bayesian decisions and transport,” Proceedings of SPIE 

conference, Baltimore, May 2014. Unrestricted Content
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(7) Muhammad Khan & Martin Ulmke, “improvements in the implementation of log-

homotopy based particle flow filters,” Proceedings of IEEE FUSION Conference, 

Washington DC, July 2015.

(8) Yunpeng Li & Mark Coates, “particle filtering with invertible particle flow,” IEEE 

Transactions on Signal Processing, preprint, February 2017.

(9) Pete Bunch & Simon Godsill, “approximations of the optimal importance density 

using Gaussian particle flow importance sampling,” Journal of American Statistical 

Association, 2015.

(10) Jeremy Heng, Arnaud Doucet & Yvo Pokern, “Gibbs flow for approximate transport 

with applications to Bayesian computation,” Journal of Statistics, Royal Society, 

December 2015.

(11) Peter Bickel, Bo Li & Thomas Bengsston, “sharp failure rates for the bootstrap 

particle filter in high dimensions,” in “pushing the limits of contemporary statistics,” 

edited by J. K. Ghosh, IMS Press, 2008.

(12) Paul Bui Quang, Christian Musso & Francois Le Gland, “an insight into the issue of 

dimensionality in particle filtering,” IEEE Proceedings of FUSION Conference, 2010.
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derivation of particle flow with Q ≠ 0:
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assuming that Q is a constant positive multiple of the identity 

matrix, i.e., Q = αI, and approximating f using small curvature 

flow & natural gradient flow, we get:
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Chris Kreucher, “A Geodesic Flow Particle Filter for

Non-Thresholded Measurements,” 14 October 2016.
Unrestricted Content
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Nima Moshtagh, Jonathan Chan, Moses Chan, “Homotopy Particle Filter for Ground-

Based Tracking of Satellites at GEO,” AMOS Conference, Hawaii September 2016. 

boring old EKF standard 

particle 

filter 

particle flow filter 
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Nima Moshtagh, Jonathan Chan, Moses Chan, “Homotopy Particle Filter for Ground-

Based Tracking of Satellites at GEO,” AMOS Conference, Hawaii September 2016. 
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MATLAB 
was vectorized

for SIRPF but 

not the HPF 

Nima Moshtagh, Jonathan Chan, Moses Chan, “Homotopy Particle Filter for Ground-

Based Tracking of Satellites at GEO,” AMOS Conference, Hawaii September 2016. 
Unrestricted Content



new filter improves angle rate estimation accuracy 

by two or three orders of magnitude

extended Kalman filter diverges because it cannot model 

multimodal conditional probability densities accurately

highly nonlinear dynamics:
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N = 1,000 particles

100 Monte Carlo trials

20 dB SNR

10% tropo & SDMB 

d = 6
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comparison of estimation accuracy for three filters:

extended

Kalman filter

standard particle filter

particle flow
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IMU-only Navigation problem (no GPS)
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particle flow

NAV solution

NAV solution

particle flow

NAV solution =

particle flow

EKF diverges (not shown); d = 15, N = 1000
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EKF

NEW 

FLOW
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EKF

NEW 

FLOW
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EKF

NEW 

FLOW
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(1) linear PDE in unknown f or q

(2) constant coefficient PDE in q

(3) first order PDE

(4) highly underdetermined PDE

(5) same as the Gauss law in Maxwell’s equations

(6) same as Euler’s equation in fluid dynamics

(7) existence of solution if and only if volume integral of η is zero

(i.e., neutral charge density for plasma; satisfied automatically)
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the N-principle*

65

*Emily Walsh & Chris Budd, “moving mesh methods for problems 

in meteorology,” talk at ICIAM Vancouver 2011.
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STIFFNESS
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What is 

“stiffness” 

(in the 

context of 

ODEs)?
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various definitions of “stiff” ODE:

1. An ODE is “stiff” if certain numerical integration 

methods are unstable unless we use an extremely 

small step size.

2. An ODE is “stiff” if explicit methods for 

numerical integration do not work well.

3. An ODE is “stiff” if the Jacobian matrix of the 

flow is ill-conditioned.

4. An ODE is “stiff” if the solution changes rapidly 

over a time scale that is short compared with the 

time interval of interest.

5. Stiff ODEs are evil.
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geodesic particle flow :
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If we approximate the density p as Gaussian, then the observed 

Fisher information matrix can be computed using the sample 

covariance matrix (C) over the set of particles:
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how to mitigate stiffness in ODEs for certain particle flows* 

method computational

complexity

filter 

accuracy

comments

1. use a stiff ODE solver (e.g., implicit 

integration rather than explicit)
large to 

extremely large

uncertain standard textbook 

advice

2. use very small integration steps everywhere extremely large good brute force 

solution

3. use very small integration steps only where 

needed (adaptively determined)
small to medium 2nd best Shozo Mori & 

Daum (2016)

4. use very small integration steps only where 

needed (determined non-adaptively)
small 3rd best easy to do with 

particle flow

5. transform to principal coordinates or 

approximately principal coordinates
small best easy for certain 

applications

6. Battin’s trick (i.e., sequential scalar 

measurement updates)
small very bad destroys particle 

flow

7. Tychonov regularization of the 

Hessian of  log p
very small often helps

8. shrinkage of the Hessian of log p very small often helps Khan & Ulmke

(2015)

70*Daum & Huang, “seven dubious methods to mitigate stiffness in particle 

flow for nonlinear filters,” Proceedings of SPIE Conference, May 2014.
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particle flow with non-uniform non-adaptive integration

to mitigate stiffness of the flow
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lambda = 
0
0.001000000000000
0.001279802213998
0.001637893706954
0.002096179992453
0.002682695795280
0.003433320018282
0.004393970560761
0.005623413251903
0.007196856730012
0.009210553176895
0.011787686347936
0.015085907086002
0.019306977288833
0.024709112279856
0.031622776601684
0.040470899507598
0.051794746792312
0.066287031618264
0.084834289824407
0.108571111940220
0.138949549437314
0.177827941003892
0.227584592607479
0.291263265490874
0.372759372031494
0.477058269614393
0.610540229658533
0.781370737651809
1.000000000000000

example of non-adaptive

non-uniform step size in lambda
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this flow requires adaptive 

numerical integration to mitigate 

stiffness (see Shozo Mori 2016)

Unrestricted Content



REFERENCES ON STIFFNESS:
1. Fred Daum & Jim Huang, “seven dubious methods to mitigate stiffness in 

particle flow for nonlinear filters,” Proceedings of SPIE Conference on signal 

processing, edited by Oliver Drummond, Baltimore, May 2014.

2. Muhammad Khan & Martin Ulmke, “improvements in the implementation 

of log-homotopy based particle flow filters,” Proceedings of IEEE FUSION 

Conference, Washington DC, July 2015.

3. Shozo Mori, Fred Daum & Joel Douglas, “adaptive step size approach to 

homotopy-based particle filtering Bayesian update,” Proceedings of IEEE 

FUSION Conference, Heidelberg, July 2016.

4. Shozo Mori, Fred Daum & Joel Douglas, “Algorithm-Based Inertial 

Measurement Unit Only Navigation Filtering,” MSS National Symposium on 

Sensor & Data Fusion, October 2017. 

5. Kenneth Eriksson, Claes Johnson and Anders Logg, “On explicit time 

stepping for stiff ODEs,” SIAM Journal of Scientific Computing, volume 25 

No. 4, pages 1142-1157, 2003.

6. Dan Kushnir and Vladimir Rokhlin, “a highly accurate solver for stiff 

ODEs,” Yale math dept. preprint, 2011.
80Unrestricted Content



81

stan v2.10.0
Daniel Lee; Bob Carpenter; Peter Li; Michael Betancourt; maverickg; Marcus Brubaker; Rob Trangucci; Marco 

Inacio; Alp Kucukelbir; Mitzi Morris; bgoodri; Jeffrey Arnold; Dustin Tran; Matt Hoffman; Stan buildbot; Avraham 

Adler; Alexey Stukalov; Allen Riddell; Rob J Goedman; Kevin S. Van Horn; Juan Sebastián Casallas; Mike 

Lawrence; Amos Waterland; Jonah Gabry; Daniel Mitchell; tosh1ki; wds15; Krzysztof Sakrejda; Guido Biele; 

Damjan Vukcevic

v2.10.0 (17 June 2016) New Team Members

 Aki Vehtari (Aalto Uni) --- GPs, LOO, statistical modeling, MATLAB

 Rayleigh Lei (U. Michigan) --- vectorizing functions

 Sebastian Weber (Novartis) --- diff eq models

 stiff diff eq solver CVODES from Sundials

 add control parameters (tolerance, max iteraitons) to ODE solvers

 rename ODE solvers based on algorithm, integrate_ode_rk45 for existing non-stiff Runge-Kutta solver

and integrate_ode_bdf for the stiff backward differentiation form; deprecate the unmarked 

integrate_ode

function (#1886)

 limiting diff eq iterations in solvers (Boost/CVODES)

 unit_vector as parameter (#1713) [it never worked in the past]

 rename multiply_log and log_binomial_coefficient to lmultiply and lchoose (also part of #1811)

 incomplete beta function as inc_beta (#1540)

New Internal Features

 exhaustive HMC (XHMC)

 multinomial variant of NUTS (#1846)

 simplified NUTS criterion (#1852)

 uniform static HMC (#1849)

 Riemannian HMC with SoftAbs (#304)

14.7 MB Preview Download
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What is Stan? 

•“Probabilistic programming language implementing full 
Bayesian statistical inference” 
–MCMC sampling (Hamiltonian MC, NUTS) 
–Maximum likelihood estimation (BFGS) 

•Coded in C++ and runs on all major platforms 
•Open-source software (+ maintained): http://mc-stan.org/ 
•Standalone software, or interfaces with R, Python, Matlab, 
Julia 
•HMC uses gradient information → less affected by 
correlations between parameters than random walk MC 
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Contributions from ExaScience Lab

•More complex models 
•Bug fixes: 
–Memory leak (later incorporated into Stan 2.6) 
–Initial condition ODE (t0): removed restriction (timepoints
≠ t0) 
•Implemented better ODE solver: CVODE (Sundials) 
–Currently in Stan: only Runge-Kutta (simple/non-stiff) 
–CVODE: can deal with difficult (stiff/unstable) models 
–Jacobian: built using the auto-diff system of Stan 
•Stan development team (Daniel Lee) is currently looking at 
Stan-CVODE implementation 
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WHY 

STOCHASTIC

?
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benefit of stochastic vs. deterministic flow

deterministic flow

stochastic flow

Unrestricted Content



WHY STOCHASTIC?
1. it works better (see plots)

2. all practical particle filters that actually work robustly use 

stochastic methods; e.g., “roughening” in bootstrap filter, 

“rejuvenation” in optimal transport, “pseudo-noise” in second 

generation ensemble Kalman filter, Metropolis-Hastings, 

Hamiltonian Monte Carlo, Metropolis adjusted Langevin (MALA)

3. correction for bias of fixed (random) initial distribution of particles

4. the solution of our PDE using Gromov’s method requires a 

stochastic term (to make the PDE sufficiently 

underdetermined)

5. stochastic term is required in order to give correct uncertainty 

quantification (e.g., covariance consistency); theory & MC

6. simple intuition from real world: how well would your car work at 

absolute zero temperature?
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